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1 Efficient Computation for Block-wise Matrix

In Section 2.3, we need to compute the following formula,

E(h|x) = ΣhP
TΣ−1

x x. (1)

Directly computing Eqn.(1) leads to expensive memory and computational com-
plexity. Let d represents the dimension of feature and m represents the number
of images of the subject, the computational complexity is O

(
d3m3

)
and the

memory complexity is O
(
d2m2

)
for naive implementation. However, by taking

the advantage of block-wise structure of the matrix, the complexity can be re-
duced to O

(
d3 +md2

)
in computation and O

(
d2
)
in memory. In this part, we

describe the details of the efficient implementation.

1.1 Efficient Inverse

In Eqn.(1), we need the calculate the inverse of Σx. We will show in the rest
of part how to compute Σ−1

x in O
(
d3
)
complexity. As discussed in Section 2.3,

Σx is the covariance matrix of m observations(features of face images) for one
subject, which can be derived as,

Σx =


Sµ + Sε Sµ · · · Sµ

Sµ Sµ + Sε · · · Sµ

...
...

. . .
...

Sµ Sµ · · · Sµ + Sε

 .

Suppose its inverse satisfy the following form:

Σ−1
x =


F +G G · · · G

G F +G · · · G
...

...
. . .

...
G G · · · F +G

 (2)
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Using ΣxΣ
−1
x = I, for the elements on the diagonal, we have:

(Sµ + Sε)(F +G) + (m− 1)SµG = I (3)

Where m is the image number for each subject. For other elements, we have:

(Sµ + Sε)G+ SµF + (m− 1)SµG = 0 (4)

Eqn. (3) - Eqn. (4):

SεF = I

F = S−1
ε (5)

Put Eqn. (5) into Eqn. (4), we have:

G = −(mSµ + Sε)
−1SµS

−1
ε (6)

By plugging into the results of F and G into Eqn.(2), we have the inverse
matrix of Σx. Since the computational complexity for computing F and G are
O(d3), the computational complexity for matrix Σx is O(d3).

1.2 Efficient Matrix Multiplication

We rewrite the Eqn.(1) here for the convenience of reading,

E(h|x) = ΣhP
TΣ−1

x x,

Where h = [µ; ε1; · · · ; εm] are the latent variables and x = [x1; · · · ;xm] are the
observations.

We can see that directly computing Eqn.(1) is still expensive, even the inverse
of matrix Σx is known. The complexities in both computation and memory are
O(m2d2). In this part, we show that the complexity can be reduced to O(md2)
and O(d2) in computation and memory respectively.

By putting Eqn.(2) into Eqn.(1), we can get:

µ =

m∑
i=1

Sµ(F +mG)xi (7)

εj = xj +
m∑
i=1

SεGxi (8)

From Eqn.(7) and Eqn.(8), we can tell that the computational complexity is
O(md2) and the complexity in memory is O(d2).
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1.3 Summary

Here we present the summary of complexity analysis for our algorithm.

1. The complexities of naive implementation are O
(
d3m3

)
in computation and

O
(
d2m2

)
in memory.

2. The complexities of our method are O
(
d3 +md2

)
in computation and O

(
d2
)

in memory.
3. Usually the dimension of feature(around 1000) is larger than the number of

images for one subject(around 100), the complexities of our method can be
simplified to O

(
d3
)
in computation and O

(
d2
)
in memory.

2 Negative Definite

In this part, we prove the negative definiteness of matrix A and G described in
Section 2.2. In the beginning, we introduce three lemmas which will be used in
the following proof.
Lemma 1. (Schur’s complement theory) Let A ≻ 0,(

A B
BT C

)
≻ 0 ⇔ C −BTA−1B ≻ 0

Lemma 2. Let A ≻ 0 and B ≻ 0,

A−B ≻ 0 ⇔ λmin

(
B−1/2AB−1/2

)
> 1

where λmin(·) represents the minimum eigen value of the matrix.
Lemma 3. Block matrix inversion:[

A B
C D

]
=

[
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
2.1 G

It is easy to prove that matrix G is negative definite. Referring Eqn.(6), matrix
G can be represented as,

G = −(2Sµ + Sε)
−1SµS

−1
ε

As Sµ might not be invertible, we introduce a new variable:

P = −(2(Sµ + λI) + Sε)
−1(Sµ + λI)S−1

ε

we prove (−P )−1 is positive definite by reformulating its form,

(−P )−1 = Sε(Sµ + λI)−1(2(Sµ + λI) + Sε) = 2Sε + Sε(Sµ + λI)−1Sε

Both 2Sε and Sε(Sµ + λI)−1Sε are positive definite. The summation of them
are also positive definite. Since (−P )−1 is positive definite, matrix P is negative
definite. So

G = lim
λ→0

P

is also negative definite.
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2.2 A

Using the block matrix inversion in lemma 1, the matrix A can be reformulated:

A = (Sµ + Sε)
−1 − ((Sµ + Sε)− Sµ(Sµ + Sε)

−1Sµ)
−1 (9)

As the covariance matrix of the distribution P (x1, x2|HI):

ΣI =

[
Sµ + Sε Sµ

Sµ Sµ + Sε

]
.

is positive definite. Using Schur’s complement theory in lemma 2, the formula-
tion:

N = (Sµ + Sε)− Sµ(Sµ + Sε)
−1Sµ

is also positive definite. Let,

M = (Sµ + Sε)
−1/2N(Sµ + Sε)

−1/2

= (Sµ + Sε)
−1/2((Sµ + Sε)− Sµ(Sµ + Sε)

−1Sµ)(Sµ + Sε)
−1/2

= I− (Sµ + Sε)
−1/2Sµ(Sµ + Sε)

−1Sµ(Sµ + Sε)
−1/2

On one hand, since M is positive definite, the eigen value of matrix M is larger
than 0. On the other hand, as the second term in the equation above is positive
definite, the eigen value of matrix M is smaller than 0, i.e.

1 > λ(M) > 0

Therefore, all the eigen values of M−1 are larger than 1.

λ(M−1) > 1

As

M−1 = (Sµ + Sε)
1/2((Sµ + Sε)− Sµ(Sµ + Sε)

−1Sµ)
−1(Sµ + Sε)

1/2

According to lemma 3, we have

−A = ((Sµ + Sε)− Sµ(Sµ + Sε)
−1Sµ)

−1 − (Sµ + Sε)
−1 ≻ 0

Therefore A is negative definite.

3 Invariance to Full Rank Linear Transform

From the Eqn.(9) and Eqn.(9) we have,

G = −(2Sε + SεS
−1
µ Sε)

−1

A = (Sµ + Sε)
−1 − ((Sµ + Sε)− Sµ(Sµ + Sε)

−1Sµ)
−1

(10)
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Let the full rank linear transform be,

y = Wx

where x is the original feature and y is transformed feature. W is the full rank
linear transform matrix. The covariance matrixes of identity and intra-person
variation for the new feature y can be derived as,

S̃µ = WSµW
T

S̃ϵ = WSϵW
T

(11)

By plugging Eqn.(11) into Eqn.(10) and simplifying the equation, we have

G̃ = −(WT )−1(2Sε + SεS
−1
µ Sε)

−1(W )−1

Ã = (WT )−1((Sµ + Sε)
−1 − ((Sµ + Sε)− Sµ(Sµ + Sε)

−1Sµ)
−1)(WT )

W is inheritable, because it is full rank linear transform. Combining the above
equations, we can get

r (y1, y2) =y1
T Ãy1 + y2

T Ãy2 − 2y1
T G̃y2

=x1
TAx1 + x2

TAx2 − 2x1
TGx2

=r (x1, x2)

(12)

Therefore the similarity based on joint Bayesian is invariant to full rank linear
transform.

4 Connection with Reference Based Method

In this part, we show that the metric derived from the angle of reference based
method is equivalent to the metric derived from joint Bayesian. The metric
derived from reference based method can be written as,

Log

( ∫
P (x1|µ)P (x2|µ)P (µ)dµ∫

P (x1|µ)P (µ)dµ
∫
P (x2|µ)P (µ)dµ

)
. (13)

Let

µ ∼N (0, Sµ)

x ∼N (µ, Sϵ)

We have ∫
P (x|µ)P (µ)dµ =P (x) = N (0, Sµ + Sϵ)∫

P (x1|µ)P (x2|µ)P (µ)dµ =P (x1, x2) = N(0, Σ)

Σ =

(
Sµ + Sϵ Sµ

Sµ Sµ + Sϵ

) (14)

It is obvious from Eqn.(14) that the molecule of Eqn.(13) is equal to P (x1, x2|HI)
and the denominator of Eqn.(13) is equal to P (x1, x2|HE). Therefore the two
metrics are equivalent.


